
The surprising complexity of TCP/IP checksums in the network

stack

Henning Brauer

BS Web Services

Abstract

TCP and IP have well known and well un-

derstood checksum mechanisms. The actual

checksum math is easy and, from a perfor-

mance standpoint, so cheap that it can be con-

sidered free. In the process of improving the

use of hardware checksum offloading engines,

recalculating the IP checksum has been found

to be essentialy free. However, that is not the

case for the TCP and UDP checksums, which

was partially expected. On further inspection a

surprising complexity in dealing with the pro-

tocol checksums has been found.

We’ll look at how these checksums are calcu-

lated, where the complexity comes from, how

an ancient BSD performance hack made it into

hardware offloading engines, the stack interac-

tion and issues with hardware offloading en-

gines.

1 Introduction

For a long time I had been annoyed by the

checksum handling in pf. pf used to fix up

checksums on the fly, as in, whenever it modi-

fied a packet - which it would do for all forms

of NAT, for example - it adjusted the origi-

nal checksum for the applied word delta. This

is not only annoying and error prone in many

places, it also lead to deeply nested calls to

pf cksum fixup. When Theo de Raadt some-

when in 2009 or 2010 pointed me to one of

these super ugly and not exactly efficient nested

pf cksum fixup calls, i knew it was time to look

deeper into the issue.

On top of this, there is a long standing bug

with said checksum fixup and packets pf redi-

rected to localhost and checksum offloading,

a bug that Christian Weisgerber (naddy@) has

explained to us pf people repeatedly over the

years, but it was neither easy to follow nor to

fix.

Eventually, at the k2k10 hackathon in Ice-

land, I started looking into our checksum han-

dling in general, and the findings were quite in-

teresting.

2 Checksum Calculation

The actual calculation of the checksum is quite

simple. The checksum is the lowest word of

the one-complement sum of all the words the

checksum covers, basically.

3 General Performance Considera-

tions

After years of profiling our network stack it is

clear that the actual math here is so cheap that it

can be considered free on every halfway mod-

ern system. The actual integer units are never

our bottleneck, the limiting factors are latency



and bandwidth to caches, memory and devices.

Thus, a checksum covering a few fields that

have been touched very recently and thus are in

cache is almost free. A checksum covering a

whole bunch of data that hasn’t been accessed

yet at all is expensive, since the data has to be

read from RAM, which is relatively slow.

The actual checksum algorithm has opti-

mized assembler implementations on many

platforms we support. Wether these hand-

optimizied versions are actually faster than the

generic C version is an interesting question that

has not been evaluated here.

4 The IP Checksum

The checksum in the IP header (referred to as

the IP checksum) covers the IP header. It has

to be updated by each router forwarding the

packet as it updates the ttl field. IPv6 does not

have this checksum.

Since this checksum only covers the rela-

tively small IP header and several fields of that

header have just been accessed before, recalcu-

lating it is pretty much free. The performance

advantage of offloading it to a capable NIC is so

small that it gets lost in the noise when trying

to measure it.

5 IP Checksum Implementation in

OpenBSD

In our network stack - and similiar in the other

BSD-derived stacks - an incoming IP packet is

handled in ip input(). Besides a lot of validity

checks, ip input() decides wether that packet

is to be delivered locally, in which case it is

handed off to upper layers, to be forwarded or

to be dropped as undeliverable, e. g. when

forwarding is off. The inbound pf test() call,

which makes pf examine the packet, is also

here.

In the forwarding case, the packet is handed

off to ip forward, which deals with routing and

ttl decrementation. The actual route lookup and

some other related tasks are already done in

ip input(), as an implementation side-effect. If

the packet is to be forwarded it gets handed off

to ip output().

ip output() checks and, for locally generated

packets, fills in a lot of the IP header fields. The

outbound pf test() call is here as well. Right

after the pf test call the ip checksum is recalcu-

lated unconditionally, last not least to cover the

ttl decrement for forwarded packets, possible

changes done by pf. Locally generated pack-

ets do not even have a checksum at this point

and get it filled in.

At this point it seems obvious that the ip

checksum fixup done all over the place in pf

is useless work, since the ip checksum is recal-

culated just after pf in ip output anyway, and

inbound the check happens before pf. How-

ever, pf is not only called from ip input() and

ip ouput(). There also is the bridge case - the

bridge calls pf test() too, and the bridge does of

course not decrement the ttl, nor does it make

other changes to the IP header, thus it does not

recalculate the ip checksum after pf. This is

also the reason why the bridge is special-cased

all over the stack.

The solution to this problem is to make the

bridge behave like a regular output path. To

complicate matters, checksum offloading en-

ters the picture.

6 IP checksum offloading

Pretty much every network interface chip/card

made in the last decade is capable of perform-

ing the ip checksum calculation in hardware.

To make use of that, our stack has been mod-

ified a long time ago to delay the actual check-

sum calculation up until we definately know on

which interface the packet is going to be sent

out. We can then check wether the interface in

question has matching offload capabilities, in-

dicated via interface flags. If so we don’t need



to do much more but to mark the packet for

hardware checksumming. If not, we calculate

the ip checksum in software.

To know wether a packet needs checksum-

ming at all we use a flag in the mbuf packet

header, a structure attached to the packet data

for bookkeeping in throughout the stack. Ev-

erywhere we know the packet needs checksum-

ming we plain set this flag.

This works fine for all the regular output

pathes. It doesn’t for the bridge, due to its lack

of checksum handling alltogether.

The bridge code is quite old and not exactly

an example for good programming. It is hard to

follow. Adding the missing checksum handling

in its output pathes - there is unfortunately even

more than one - turned out to be not so easy.

Once this was done and the bridge special cas-

ing all over the stack removed, things mostly

worked. Some weird behaviour was eventually

tracked down to problems with broadcase pack-

ets, and upon closer inspection the bridge uses

a gross hack to shortcut broadcast processing,

so that a packet that supposedly goes out to a

checksum offloading capable interface can get

copied and sent out on another interface, poten-

tially without matching offloading capabilities.

This resulted in packets being sent out uncheck-

summed in that case.

Fixing the broadcast hacked was not straight-

foward, this needs to be adressed at a later

time. The special casing in the stack had to

stay. However, with that basic checksum han-

dling and the special casing in place, we were

able to stop doing any ip checksum handling in

pf, since now all output pathes recalculate the

checksum if necessary.

Since recalculating the ip checksum is so

cheap even in software on any halfway modern

system performance improvements from this

change were to small to be really measurable.

7 The TCP and UDP checksums

The tcp and udp, often referred to as protocol

checksums, are quite a different beast from the

ip checksum. They only cover a few ip header

fields, that part is called pseudo header check-

sum, the tcp/udp header and the entire pay-

load. Due to the full payload coverage recal-

culating the protocol checksum is not as cheap.

While chances are good that the payload is still

in cache for locally generated packets, the for-

warding case almost certainly means fetching

the payload from RAM, since we don’t touch it

for pure forwarding otherwise.

As with the ip checksum, pf used to update

the protocol checksum on the fly, with the same

problems as with the ip checksum, just in more

places.

8 protocol checksums in the

OpenBSD network stack

The procotol checksum handling is much more

complex than the ip checksum. As all BSD-

derived network stacks OpenBSD used proto-

col control blocks, in short pcbs, to track con-

nections. Even for udp, which is a connec-

tionless protocol - connectionless on the wire

doesn’t mean that the stacks don’t have some

kind of state. The pcbs are looked up using

hash tables, or, in OpenBSD, by following the

link to them from the pf state.

When a socket is opened, a template pcb

for connections from or to this socket is cre-

ated. The known parts are already filled in

and checksummed. Once a connection is made

using that socket, the template pcb is copied,

the other side’s information is added, and the

checksum updated for that. This only covers

the ip header parts, not the protocol header, and

forms the pseudo header checksum. The packet

is marked for needing checksumming at this

point and then passes on to get protocol header

and payload.



Eventually, late in the outbound path, the

flag indicating a checksumming need is evalu-

ated. If the interface that this packet should go

out on has matching offloading capabilities, we

don’t need to do anything, otherwise we do the

checksumming in software. That’s the theory,

at least.

The early calculated pseudo header check-

sum is a hack that might have made sense on

a hp300 or a vax, but is counterproductive on

any halfway modern system and foremost com-

plicated things considerably. This is where the

pf redirect to localhost problem comes from.

Some network interface cards - last not least in-

tel and broadcom - implemented their offload-

ing engines so that they rely on this hack, by

relying on the pseudo header checksum being

there.

However, when such a packet passes through

pf, we don’t know that it just has a partial

checksum, and happily update it for fields it

doesn’t cover. On a packet that originated from

localhost and gets rewritten by pf - prime ex-

ample being replies to packets that have been

redirected to localhost - we have exactly that

and end up with a broken pseudo header check-

sum. For cards that rely on and just update it

we end up with broken checksums on the wire.

Both the software engine as many other inter-

face hardware recalculate the entire checksum

and don’t care about the existing pseudo-header

checksum.

As with the ip checksum the bridge code had

to be updated for this output path to behave.

9 protocol checksum offloading

As with the ip checksum, almost all halfway

recent network interface chips and cards sup-

port tcp and udp checksum offloading, at least

for IPv4. Things are considerably more com-

plicated here tho, since we have to deal with 3

offloading cases: no offloading, pseudo header

checksum required, and full offloading. Since

the pseudo header case was broken due to the pf

handling, protocol checksum offloading is dis-

abled in the drivers in this case.

Unfortunately we have seen many silicone

bugs with offloading. While that mostly affects

early implementations and is long history, we

have recently seen a case with an Intel 10GE

chip that corrupted ospf packets - ospf is nei-

ther udp nor tcp! - when the tcp/udp offloading

engines were turned on.

10 changing the stack to make bet-

ter use of offloading engines

The basic principle is easy: work under the as-

sumption that we have always have offloading

engines. If we hit a path that doesn’t, provide a

software fallback.

To accomodate for this, the actual checksum-

ming has been moved far down in the stack and

is done pretty much as late as possible now,

when we know for sure wether we have an out-

going path with offloading capabilities. That al-

lows for removal of pretty much all checksum

handling everywhere else in the stack, we just

have to set the flag now to ask for checksum-

ming.

Subsequently, all ip and protocol checksum

adjustments have been removed from pf, with

just the flag modifications remaining. This has

interesting consequences. Since we are not up-

dating but recalculating the checksum for for-

warded packets that are modified by pf now,

that case suffers if there is no checksum of-

floading available, since we have to access the

entire payload. With pretty much any sys-

tem made in the last 10 years supporting of-

floading, only the case where pf modifies for-

warded packets (that means NAT mostly) be-

ing affected, and preventing this - by calculat-

ing the pseudo header checksum before and af-

ter pf making changes and applying the delta

to the existing checksum - hurts machines with

offloading capabilities, this seems acceptable.



Since we are not updating the checksum any

more but recalculating, we have to consider the

case of broken checksums. Adjusting a bro-

ken checksum leads to a broken checksum, so

all’s good - but if we’re recalculating, we have

ti verify the old checksum first. Again, in many

cases we already have that check performed by

the hardware offloading engines already, if not,

we have to fall back to software. This again

punishes hardware without offloading capabili-

ties, but is not fixable without punishing the of-

floading case substantially. On a halfway mod-

ern i386 or amd64 system with disabled of-

floading capabilities the total hit is in the 5 to

10traffic mix - exact numbers vary a lot with

specific hardware implementations. And these

systems have offloading capable interfaces.

Last not least this finally allows us to enable

the protocol checksum offloading on the inter-

faces requiring the pseudo header checksum,

since pf won’t munge the checksum any more.

11 ICMP

ICMP has a checksum too. The icmp check-

sum handling has been remodeled after the tcp

and udp case, instead of calculating the check-

sum early on and every time changes are being

made, we just set the flag. Late and way down

in the stack we check the flag and calculate the

checksum. Should there ever be hardware that

can offload the icmp checksum calculation it is

trivial to hook in now.

ICMP shows another interesting case. ICMP

errors quote the packet they refer to, usually

that is tcp or udp. And this quoted packet of

course has a checksum as well. In most cases

the quoted packet is truncated and the check-

sum can’t be verified anyway, so there is no

real need to adjust it. pf used to do it non-

theless. In the cases where the quoted packet

is not truncated, we can recalculate the inner

checksum as usual, just without being able to

use any offloading. In return the quoted, not

truncated packets are tiny, so the cost is minor.

In my current implementation this is not done,

since nothing in the real world cares about the

inner checksum. The only case I am aware of is

scapy, a program generate and verify packets.

12 performance considerations

On a modern amd64 system we could not see

any performance benefit from these changes,

not even from offloading in general. On older

systems (Pentium M) I have seen around 7indi-

cates that the modern Xeon has so much raw

computing power and large caches that other

factors, like latency to the devices, hides the

saved work completely when just doing packet

forwarding.

However, these changes simplify the check-

sum handling a lot, shortening the code consid-

erably and allow for even more simplifications

by followup cleanups.

13 future work

The gross bridge broadcast hack mentioned

earlier needs to be fixed so that the special cas-

ing all over the stack can go away.

There is no point in the partial early check-

sum calculations in the pcb templates and upon

establishment of a new connection any more,

we can simplify things by just calculating the

pseudo header checksum in the output routines

where we figure out wether we have offloading

or use the software engine.

14 Acknowledgments

A lot of help and support, last not least

with testing, came from Christian Weisgerber

(naddy@) and Mike Belopuhov (mikeb@).

The IPv6 protocol checksum software engine

was written by Kenneth R Westerback (krw@).

My trip to AsiaBSDcon has been funded by

the conference.



15 Availability

The ip checksum handling changes are part of

OpenBSD since 5.1. The protocol checksum

parts should be committed soon.

This paper and the slides from my presenta-

tion will be availabe from the papers section on

http://www.bulabula.org

and be linked from OpenBSD’s paper section

on

http://www.openbsd.org/papers


